skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Subbaraman, Blair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 25, 2026
  2. Machine settings and tuning are critical for digital fabrication outcomes. However, exploring these parameters is non-trivial. We seek to enable exploration of the full design space of digital fabrication. To identify where we might intervene, we studied how practitioners approach 3D printing. We found that beyond using CAD/CAM, they create bespoke routines and workflows to explore interdependent material and machine settings. We seek to provide a system that supports this workflow development. We identified design goals around material exploration, fine-tuned control, and iteration. Based on these, we present p5.fab, a system for controlling digital fabrication machines from the creative coding environment p5.js. We demonstrate p5.fab with examples of 3D prints that cannot be made with traditional 3D printing software. We evaluate p5.fab in workshops and find that it encourages novel printing workflows and artifacts. Finally, we discuss implications for future digital fabrication systems. 
    more » « less